37 research outputs found

    Observation of squeezed light with 10dB quantum noise reduction

    Full text link
    Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.Comment: 10 pages, 4 figure

    Coating-free mirrors for high precision interferometric experiments

    No full text
    Thermal noise in mirror optical coatings may not only limit the sensitivity of future gravitational-wave detectors in their most sensitive frequency band but is also a major impediment for experiments that aim to reach the standard quantum limit or cool mechanical systems to their quantum ground state. We present the design and experimental characterization of a highly reflecting mirror without any optical coating. This coating-free mirror is based on total internal reflection and Brewster-angle coupling. In order to characterize its performance, the coating-free mirror was incorporated into a triangular ring cavity together with a high quality conventional mirror. The finesse of this cavity was measured using an amplitude transfer function to be about F 4000. This finesse corresponds to a reflectivity of the coating-free mirror of about R 99.89%. In addition, the dependence of the reflectivity on rotation was mapped out

    Interferometer readout-noise below the Standard Quantum Limit of a membrane

    Get PDF
    Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecision) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated is more than 16 dB below the peak value of the membrane's standard quantum limit (SQL). This reduction is significantly higher than those of previous works with nano-wires [Teufel et al., Nature Nano. 4, 820 (2009); Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and its relation to the readout performance and conclude that neither our nor previous experiments achieved a total noise spectral density as low as the SQL

    Frequency dependence of thermal noise in gram-scale cantilever flexures

    Get PDF
    We present measurements of the frequency dependence of thermal noise in aluminum and niobium flexures. Our measurements cover the audio-frequency band from 10 Hz to 10 kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances. Results from two flexures are well explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit. Furthermore, measurements on a third flexure provide evidence that surface damage can affect the frequency dependence of thermal noise in addition to reducing the quality factor, a result which will aid the understanding of how aging effects impact on thermal noise behavior.Australian Research Counci

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    The 10m AEI prototype facility A brief overview

    Get PDF
    The AEI 10 m prototype interferometer facility is currently being constructed at the Albert Einstein Institute in Hannover, Germany. It aims to perform experiments for future gravitational wave detectors using advanced techniques. Seismically isolated benches are planned to be interferometrically interconnected and stabilized, forming a low-noise testbed inside a 100 m^3 ultra-high vacuum system. A well-stabilized high power laser will perform differential position readout of 100 g test masses in a 10 m suspended arm-cavity enhanced Michelson interferometer at the crossover of measurement (shot) noise and backaction (quantum radiation pressure) noise, the so-called Standard Quantum Limit (SQL). Such a sensitivity enables experiments in the highly topical field of macroscopic quantum mechanics. In this article we introduce the experimental facility and describe the methods employed, technical details of subsystems will be covered in future papers

    Detection Confidence Tests for Burst and Inspiral Candidate Events

    Full text link
    The LIGO Scientific Collaboration (LSC) is developing and running analysis pipelines to search for gravitational-wave transients emitted by astrophysical events such as compact binary mergers or core-collapse supernovae. However, because of the non-Gaussian, non-stationary nature of the noise exhibited by the LIGO detectors, residual false alarms might be found at the end of the pipelines. A critical aspect of the search is then to assess our confidence for gravitational waves and to distinguish them from those false alarms. Both the 'Compact Binary Coalescence' and the 'Burst' working groups have been developing a detection checklist for the validation of candidate-events, consisting of a series of tests which aim to corroborate a detection or to eliminate a false alarm. These tests include for example data quality checks, analysis of the candidate appearance, parameter consistency studies and coherent analysis. In this paper, the general methodology used for candidate validation is presented. The method is illustrated with an example of simulated gravitational-wave signal and a false alarm.Comment: 15 pages, 8 figures, Contribution to 12th Gravitational Wave Data Analysis Workshop. Version sent to Classical and Quantum Gravity immediately before publication. It addresses the CQG referee's comment

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore